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Solutions of the complete Navier-Stokes system are constructed in the form 
of special series for a viscous, heat conducting continuous compressible 
medium. The zeroth-order term of the series transmits some exact solution 
of the initial System (e.g. all parameters ofthemedium are constants). 
Further terms of the series are determined by recurrence methods in the 
course of solving the linearized Navier-Stokes system, homogeneous for 
the first term and inhomogeneous for all remaining terms. The represen- 
tations obtained are used to obtain approximate solutions of some boundary 
value problems. The process of stabilizing unidirectional flow between 
two fixed walls with constant heat flux specified on them is discussed, 
and an analogue of Poiseuille flow is constructed. 

We consider the system of Navier-Stokes equations /I/ 

-f$- + V.Vp+pdivV=D 

f+g+vp$) + Eu,cl~Vp + Eu,b,CT = 

~Z(divV)(FC’--~FIL)+“Bijj~u+O~Rr)+ 

(p’ + f p) V (div. V) + ~AV] 

PC, (-$- + V- VT) + Eu,B,b,T div V = 

& (xAT f Vx. VT) -f- -$ (p’ (div V)a + 

(I.11 
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which represents a differential form of the laws of conservation of mass, momentum and energy 

for the flows of a viscous, heat-conducting continuous compressible medium. Here t is the 

time, 2, (a = 1, 2, 3) are the spatial coordinates, = = G% rz* %I, P is the density, v, (a == 
1, 2, 3) are Cartesian projections of the velocity vector V of the medium, T is the tempera- 

ture, IL, p' are the coefficients of dynamic and volume viscosity (the first and second coef- 

ficients of viscosity), X is the thermal conductivity, 11 av,/~%~ll is a Jacobi matrix, 

II hJaq3 IIT is its transpose, A, div, '7 denote the Laplace, divergence and grad operators, 

a dot denotes a scalar product, the vectors are regarded as line vectors and the product of a 

vector and a matrix is calculated by the usual rules of matrix multiplication. 

When deriving system (1.1) it was assumed that there are no external mass forces nor 
external heat sources or sinks, and p, !f were chosen as the independent thermodynamic par- 

ameters. The equations of state as well as the coefficients of viscosity and thermal con- 

ductivity are assumed to be given functions 

p = p (PY T), p' = p' (P, T), x =x (P, T) (1.2) 

P = P (P, 0, e = e (P, T) (1.3) 

where p denotes the pressure and e is internal energy. Then 

The passage to dimensionless coordinates is made in the system (1.1) in a standardmanner, 

using the positive constants L, pot uo, To, and an asterisk denotes the dimensional values of 

the functions for p = pot T = T,. Since we shall construct the solutions of the system (1.1) 

in the form of series, it follows that the functions (1.2) and (1.3) are assumed to be analytic 

in the neighbourhood of the point (p = 1, T = i) and positive at the point itself. 
In the case of a thermodynamically ideal gas with equations of state 

p = RpT, e = cvoT, R, c,, = const > 0 (1.4) 

we have Eu, = Eu~ = 1/(yM1), Ma = ~o'/(RToy) is the square of the Mach number, y =1 +R/c,,,> 1 

is the adiabatic index of the gas, 01 = Y (v - i)M? Pr, = Pr/y, Pr = c*,l"*?r'lx* is the Prandtl 
number. If, using the given pa, To we choose u. = [cl** + bl**Tol(po*~*)l’~~ as the scale of 

velocity, then Eu, + Euz*8, = 1. In the case of a thermodynamically ideal gas this corresponds 
to the fact that the velocity of sound u. = (RT,y)r:, is chosen as the velocity scale, and 

then we have M = 1. 
In the present paper the solutions of system (1.1) are constructed in the form of series 

(1.5) 

in powers of the new independent variable 8, which has no predetermined specific physical 

meaning. We shall represent the vector U is the form (1.51, if U, represents any exact 
solution of the system (1.1) transmitting, for example, a homogeneous medium at rest. 

In order to obtain a system of equations for the components of the vector Uk(k> I), we 

assume that U also depends on 8, system (1.1) is differentiable k times in e, and e is 
assumed equal to zero. As a result we obtain, for the components of the vector Uk, a linear 
system of partial differential equations with the same principal part for all k>i, the 
homogeneous part for k = 1 and inhomogeneous for k)2. The coefficients of the principal 
part of the system depend on U,, and the inhomogeneities at k92 are polynomialsin com- 
ponents of the vectors U1, 0 < l<k - 1 and of their derivatives in t, & (a = 1,2,3). 

Specifying the initial and single-type boundary conditions for Ur generates uniquely for the 

system (1.1) the conditions additionally dependent on e, and vice versa. The system for 

Ul is identical with the system obtained when the initial system (1.1) is linearized on a 
given solution U,/2/. Therefore the series (1.5) can be regarded as a solution obtained as 
a result of linearizing the complete Navier-Stokes system with subsequent construction of all 
higher-order approximations. The convergence of series (1.5) must be established when specific 
boundary value problems are considered. 

The basic aim of the present paper is the effective construction of the coefficients of 
the series (1.5), so that finite sections of the series can be used foranapproximatesolution 
of certain problems. Therefore, the convergence of the series is shown for the simplest 
situation, when the proof can be reduced to the analogue of the Cauchy-Kovalevskaya theorem. 



451 

Let the initial terms of the series Uk be constructed for 0 <k<kk, as the solutions 
of the corresponding systems in the form of functions analytic in the neighbourhood of the 

point (t = 0, x = x0). Let them also satisfy the initial and boundary conditions traditionally 
used for the Navier-Stokes system /3/. The remaining coefficients of the series Uk for 

k>kk,+i are constructed in the course of solving the Cauchy problem for the corresponding 
systems of equations with the analytic data UkI,+, Zkcp&,+ on the surface cp = 0. Here we 
have Z = {V, T). 

We assume that in the case of the surface cp=o the differential systems for UI, are 
of the Kovalevskaya type, i.e. Uk can be determined uniquely in the form of analytic func- 
tions, and the series in powers of .a formed from the given values of Uk&=o, ZkgIq=d, converge 

when 1 e 1 < e,, e, > 0. The last assumption will hold if, for example, the data on the surface 
cp=o are taken, for U,, k> k, + 1, as their zero values. This is equivalent to taking 
the finite sums 

U I F=O = Lki Uk (6 x) ek] IWI 

as the data on the surface cp=O forU and Z. 
The surface cp =O can be taken in the form cp =rr -z2,(t,zz,za) under the condition 

that sr" = z1 (0, sa', x8') and cp = 0, with the values of U,Zrp specified on it, is not a 
contact surface. 

When the above conditions hold, the series (1.5) will converge in some neighbourhood of 
the point (t = 0, x = x0, e = 0). 

The above assertion is not proved here, since it is a special case of the theoremproved 
in /4/: since the system (1.1) has no derivatives 'dU/ae, it follows that the surface a==0 
is formally a characteristic. The condition that U0 will represent any exact solution of the 
system (l.l), is identical with the necessary condition of solvability of the corresponding 
characteristic Cauchy problem. The surface cp=O represents the surface on which additional 
conditions are specified, ensuring the uniqueness of the solution of the characteristic Cauchy 
problem. The theorem given in /4/ ensures the local convergence of the series (1.5). The 
domain of convergence in the (t,x) space increases as lel decreases and "reaches" thepoints 
at which the functions Uk (O< kgk,),cp and components of the matrix S-' I,4 have singularities. 

Here S = S (t, x) IT+ is a matrix preceding the derivatives of Uk of higher order in cp in the 

corresponding differential systems. 
The quantity E represents the deviation of the solution U from Ua, although U may 

satisfy different boundary conditions as compared with U,. The assertion formulated here 
establishes the connection between the linearizing procedure with subsequent construction of 
the higher-order approximations, and the process of constructing the solutions of hyperbolic 
systems in the form of characteristic series /4, 5/. When uk (k > k, + 1) is constructed using 
the method given above the series (1.5) will transmit exactly the local solution of the Cauchy 
problem with the data on cp= 0, and transmit in an approximate manner the solution of the 
initial boundary value problem traditionally formulated for the Navier-Stokes system. It is 
possible that, using more refined estimates and taking into account the specific initial and 
boundary conditions (as was done in e.g. /3, 6/), will give the domain of applicability of the 
representation (1.5) with increased accuracy. We shall, however, stress once again, that the 
main aim of this paper is to show that in certain situations we can constructively determine 
the coefficients of the series assigning exact solutions of system (1.1). Finite segments of 
these series are used to obtain approximate solutions of certain initial-boundary value 
problems. 

2. Next we take the solution U, = {1,0,0,0,1} which transmits a homogeneous medium at 
rest. Then, for any analytic function (1.2) and (1.3) we obtain, for Uk (k ) I), the linear 
systems with constant coefficients 

%+di"V,=& 

2 + EU,Vpk + EU,VTk - 

(2.1) 

K ’ ([IL’ (1, 1) i- +] B (div V,) + AV,) = G, 

$+ + Eu,O1 divV, - &-$Tk = ffk 
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when k = 1, the quantities If',,Gkr Ht are zeros. When k>:!, 

h’--l 

The quantities G,, H, are also polynomials in terms of the components of the vectors 

U1 0 < l<k -1 and their derivatives (the actual expressions for G,, Hi, are quite bulky 

and are therefore not given here). 

System (2.1) can be transformed as follows. We introduce new unknown functions P= 
Eu,pk + Eu,T*, W = co div V,, co = (Eur i- Eu2%J~~, change the time scale t' = c,t (we shall 

omit the primes from now on), differentiate each equation of motion of system (2.1) with 

respect to the corresponding ma, put together the resulting expressions, differentiate with 

respect to t the first and last equation of (2.1), and take their linear combination. As a 

result we obtain the system 

J+'f = poAW - AP + g,, P,t = AP + x,AP, + 

(W - 14 AW + hl, 

ho = W + Vs) 1 
coHe ’ x”=- c,RePr1 ’ O<a<l 

(2.2) 

where the terms gs and h, can be determined uniquely from the right-hand sides of system 

(2.1), and the constant a represents the compressibility of the medium. In the case of an 

ideal gas, cO = 1/M, a = l/y. The initial conditions at t = 0 for Uk generate uniquely 

theinitialconditions for W,P. If the solutionofsystem (2.2) isknown, then pkcanbe foundbyinte- 

gratingtheknownexpressionwithrespecttotand V,, Tk is found fromthe corresponding linear 
equations of heat conduction. In the special case of pco = ax O (this isequivalentfortheequations 

of state (1.4) tothe fact that Pr = 0.75), the secondequationofthe systemwill have the form 

p,t = AP + x,AP, + hi, (2.3) 

After solving this equation we find W from the inhomogeneous equation of heat conduction. 

In the case when Eu, = 0, the first four equations of system (2.1) will also yieldanequation 

of the form (2.3) for W. 

The homogeneous system (2.2) can be called the "linear system of viscous flows", and its 

special case, i.e. the homogeneous Eq.(2.3), the "linear equation of viscous flows", since 

they describe, in particular, the propagation of small perturbations through a homogeneous, 

viscous heat-conducting compressible continuous medium. 

The general solution of the Cauchy problem and some boundary value problems are given 

in integral form in /7/ for the homogeneous Eq.(2.3), and the properties of this solution 

are studied for large t and small X0. Below we utilize the fact that the homogeneous system 

(2.2) allows the separation of variables W = bV(t) X (x), A’= P(t) X(x), AX = -_nZX, where n 

is a positive integer. In particular, if we take the harmonics of a single spatial variable 

as X, then R will be the frequency of the harmonic while w(t) and P(t) willbethe amplitudes. 

The roots of the characteristic equation of the system of ordinary differential equations for 

w (% p @) will be the roots of the equation 

v3 + n” (x0 -I- po) v2 + n2 (1 + naxopo) Y 4 n4xOa = 0 (2.4) 

When pO = a%, , we have v,,r = -pLon2 and 

v n2.3 = - n’ (x,12 jr 1/xo2/4 - l/n?) (2.5) 

When a = 0 we have VIZ1 = 0, and vrl2.3 will be given by formula (2.5) in which x0 

in the first term must be replaced by (x0 f pO), and in the expression under the square root 

sign by 6% -110). When a = 1 Vnr = -n'x,, v,p.Q are given by formula (2.5) in which x0 must 
be replaced by pO. When 0< a< 1, the roots of Eq.(2.4) will contain no purely imaginary 
numbers: --n2(x~+PO)<v.1<0 if v,,,, are real then VfLl <Y,,*,~ < 0, while if vnl,S are 
complex, then their real parts are negative. 

In the general case the values of the roots can be written using the formulas 

v,1 = A, + A_ -AC,, v,,,, = -_(A+ + A_)/2 + A,+ 

(A+ - A_) l/%/2, i = I/a 
A* = (-q,/2 &- I/a)“*, A+A_ = -ql/3, A0 = nr (no f po)/3 

Q = (ql/3)3 + (qr/2)a: ql = -n’ (~0 -I- po)*/3 -I na (1 + n2xopd 

q2 = 2d (xo + ~~127 - d b. + pLo)(~ + naxop3/3 -t n4x,a 

If Q<Oo, then VII&3 are real and different when Q<O, while when Q =O vna =v,~. 

If Q>O, then v,1.* are complex conjugate. Analysing the expressions for Q we find that 

x0 # Ilo. beginning with some II, Q< 0. If x0 = po, i.e. Pr, = I/&’ + ‘la), we have when 
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o<a<%,Q>O for all n. When a=V,Q=O for n=Jf%x, and Q>O for all other 

n. When V*<a<l Q<O for n satisfying the inequalities +G@, < n <I/i@,, Q = 0 for 

n = c/r& and Q > 0 for all other n. Here we have 

The values of U1 obtained by separating the variables can be used, as particular sol- 
utions of the homogeneous system (2.2), to study the development of small perturbations of 
varying size in homogeneous flows of viscous media for various values of ~O,~a,a. In particular, 
when p,, =a+, then from (2.5) it follows that for small values of xs(O<x,<2) theamplitude 
of the first harmonic (f< n<#x,) will oscillate while decreasing, and we will obtain, with 
help of the linear combination of low-frequency harmonics, a decaying running wave as a sol- 
ution of the homogeneous system (2.2). The velocity of wavepropagationis equal to 1/1 -n2X,e/4, 
the wave amplitude is large @<Z/(x&)) and does not decay. For large values of xg the high- 
frequency harmonics are stationary and do not decay f/P (@,I > 1 P (0) 113) for long periods 

(t < %J - When xg = &,, all high-frequency harmonics beginning from a specified value 
oscillate while decaying, and can be used to construct the corresponding decaying running 
waves as solutions of the homogeneous system (2.2). 

The possibility of separating the variables when the system is homogeneous, makes the 
efficient construction of the coefficients of series (1.5) feasible. 

We shall illustrate this by considering one-dimensional (al&r,= &as,= u,= Do= 0) non-steady 
flows of an ideal gas between two impermeable walls 51 = 0 and Zj = n acted upon by a given 
heat flux 

i@iaq lli*, q=x = As, A = eonst 

with the following constant values: 

1' = 0, P = PO = 4/(3 Re), x = xg = y/(Pr Rc) (2.6) 

In the case of A=O, a finite segment of the series (1.5) describes approximately the 
process of stabilizing a flow, in which the distributions of gas-dynamic parameters are given 
for the instant t=o, towards a state of uniform rest as t -+co. In this case e determines 
the difference between the initial and the limit flow. 

When A =/SO, we study the passage of the gas from a state of uniform rest at t=o, to 
a state at rest with constant temperature gradient dTlax,=Ae. The passage is caused by a 
constant heat flux applied to the walls z,=O and+= n at t>0'. Inthiscase ~ephysicalmeaning 
and the value of e is actually determined by the intensity of this heat flux, i.e. by the 
value of the constant Ae. 

In order to construct an approximate solution of such a problem, we take as U, the sum 
of solutions of the homogeneous system (2.1) : 

h = --T*, 9, = 0, T, = Aez, 

and the non-stationary solution of the form 

N 
(2.7) 

This will yield, for the functions fin(f), ulln(t), a system of linear ordinary differential 
equations with constant coefficients. The initial conditions for this system are chosen such, 
that when t=o, the sum of the stationary and non-stationary solutions will transmit,approxi- 
mately, u, = 0: pto (0) = q,, (0) = T,, (O)=O; pInlO), T,,(O), Id;ndN are the corresponding Fourier 
coefficients when the functions rfrA8z~ are expanded in a series in COS nz,. 

If, after constructing the solution , we replace approximately fS and the stationary part 
of the functions h.T, by corresponding finite segments of the Fourier series for n<N, 
the right-hand sides of system (2.1) for U, will be finite trigonometric sums in COS~Z, for 
F, andH,and in sinnz, for G,,ng2N. The coefficients of these sums are known functions of t. 
Therefore fp and *I% can also be represented in the form (2.7) with their coefficients f%II (0. 

%n f% n < 2~'. The functions are found from the inhomogeneous systems of ordinary differential 
equations with zero initial conditions. 

ft can be shown that in this case we also have the representation (2.7) for all subsequent 
coefficients of (Ix, for n dkN, and the functions fin(t) and u,~~(I) can be determined 
uniquely as solutions of the corresponding differential systems with zero initial conditions. 
The value of U, and representation (2.7) at k>2 ensure for the solution (1.5) that 
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conditions of adhesion and constancy of heat flux hold at the walls 51 = 0 and z,==.z. The 
solution (1.5) transmits approximately, at the instant t=o, the state of uniform rest. 

Figs.l-3 show the results of calculating the parameters of gas flow in the case Pa Y 10-S; 

x0= 0.05; y= 1.4; A = 1; e= 0.1. In the versions calculated we have k,= 5, N = 6, i.e. we have 
taken into account the terms 

harmonics taken in Uk was 6k. 
with c,= 0. 

of the series (1.5) UP to and including es, and the number of 

At t=. 200 the solution reaches 

0.01 

the limiting stationary state 

Fig.1 

-aor 
a/z a2 

Fig.2 Fig.3 

Fig.1 gives the values of the temperature. The lines O-4 correspond to instants of 

time t 7 0; 2.5; 10; 50; 200. T--l is plotted along the ordinate and .z, along the abscissa with 

O<z,<s for curves 0 -4, and t when 0<:<200 for curve 5 transmitting the value (T - 

1) lr,+ The passage from the state of uniform rest to the state at rest with a constant non- 

zero value of the temperature gradient is connected with the redistribution of the density on 

the segment 0<21as, and is therefore accompanied by a flow of gas. The flow is oscillatory. 

Fig.2 can give some insight into the initial stage of this flow, as it shows the values of v1 

at the instants :=0,1,2,3,6 (curves 0 -4). 

Fig.3 shows the dependence of 11 = "lIx,=-n,a on time. In the case of curve 1, t was plotted 

along the abscissa from 0 to 10, and u was plotted along the ordinate. In the case of curve 

2, -u was plotted along the ordinate and t from 0 to 100 along the abscissa. The oscillatory 

nature of the process of establishment reflects, in particular, the manner in which the values 

of the temperature was established on the walls (see curve 5 of Fig.1). However, if at some 

instants of time the values of I%1 are relatively large, then, as the calculations 

show, the values of V, at these instances will have the same sign for all O<s,<n. There- 

fore the monotonic form of the dependence of T on x1 will be preserved at all times. When 

the values of pO,xo increase and those of Ae decrease, the dynamics of the process of 

establishment will manifest themselves less strongly; 1 vlI will become smaller, and "1 d 0 
at all t>0. 

In the above example the neglected terms of the series were not estimated. The error of 

the solution obtained was estimated approximately from the manner in which the terms of the 

series constructed were decreasing, i.e. from the way in which the computed uk behaved as k 
increased. The following estimate was obtained in the course of computations for the coef- 

ficients of the harmonics in Uk: 

g 1 fk, (‘) 16 M, (t) Ak, 1 "lkn (t) 1 6 M,(t) Ak 
n=m 

4 
where Mk(t) is a SlOWly varying function and Mk(t)<Z. Thus the moduli of the computed terms 

of the series (1.5) decreased in this case not more slowly than the corresponding terms of the 

geometrical progression $2 (Aqk. When the values of p,,x, decreased and those of Ae increased, 

the convergence of the se:% for the case in question deteriorated. Terms of the series 

(1.5) began to increase rapidly with time, and subsequent terms became larger than the 

preceding ones. 

3. Let us now consider the stationary flows. When the gas is ideal and the functions 

(1.2) is constant, system (1.1) has exact solutions: a solution with a linear velocity profile 

/8/; a solution for special values of the index y 

p1 = a,, v, = u2 = 0, T = a,xI -I- a8, a, = const, 1 <j Q 3 

v, = a2 Re x,V(3 M*) when y = Ve 

vr = up Re (xp2 + xs2)/(8 M2) when y=2 
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However, the "layered" flows listed above do not allow us, unlike Poiseuille flow in the 
case of an incompressible medium /l/, to satisfy the conditions of adhesion at two fixed walls 
when x = (9, IzJr or on the walls of a tube when x = {~,x,,xs). The representation (1.5) 
enables us to construct, in the case of a compressible medium with arbitrary functions (1.2), 
(1.3), an analogue of Poiseuille flow, since the homogeneous system (2.1) has the following 
solution: 

p1 = 0, v, = {Q(%r x,), 0, O}, T, = As, 

Avll = A Re Eu, 

We can take, as a solution of the last equation, the Poiseuille parabola, vlt = A Re 
Eu, z, (x2 - ho)/2 (h, = const) for the two-dimensional case and ull = A Re Eu, (zz2 i- IQ’- ~,‘)/4 (rO = 
const is the tube radius for the three-dimensional case, as well as other functions which 
are identical with the velocity distributions in a viscous incompressible medium in tubes of 
elliptic, rectilinear and triangular cross-section /l/. After determining IJ,, further 
coefficients of the series (1.5) can be found from their inhomogeneous systems (2.1). At the 
same time, U1, exhibts a functional arbitrariness which makes it possible to satisfy the 
conditions of adhesion at prescribed surfaces for V, and secure a specified temperature or 
heat flux for Tg. 

UK were constructed directly in the two-dimensional case (8/L& = vQ = 0) for an ideal 
gas with equations of state (1.4), and constant values of (2.6). The velocity of sound was 
taken as the velocity scale (i.e. M =I ), and 

PI = 0, V,, = 2As, (x, - h,)/(3yp,,), v,, = 0, T, = Ax, (3.1) 

as U,. 
Then we find that in the system of equations for U, F, and G2 are zeros and H, = 

2~0~' - Au,,. We take as the solution of this system 

Pn = Pea - T, (x,)9 VlZ = v22 = 0 

T,=T,(x,)=- *[f(V-$)(“‘-+)l+r2]+ 
TSl% + T,, 

The constants T,,, TtI can be chosen from the conditions T, 1x,=0 = 0, aT,/& jIFo = 0, as 
wells as from the conditions T, = 0 when xp = 0 and ze = h,. In the latter case we have 

The constant pa0 is found later when the zero solution is satisfied for VU when 
z* = h,. In the course of constructing the subsequent u,, the inhomogeneities in the system 
(2.1) will grow, and in order to reduce the unnecessary bulk we shall only show the sequence 
of determining the components of the vector Uk and give the final formation for k < 5. 

The fourth equation of system (2.1) will yield Tk in such a manner, that the relations 
Tk = 0 at x, = 0,~s = ho will also hold. The first equation of system (2.1) will yield an 
expression for aV,,l%, which will then be differentiated in x2 and substituted into the 
third equation in place of 8%Skl&,a. 

As a result, the first three equations will form a system in which apk/~x,,~BvIL/ax,2,B~IL/~x, 
are the principal derivatives in x9. The functional arbitrariness which has appeared in the 
course of solving this differential system makes it possible to satisfy the conditions vlk - -0 
for x, = 0 and xp = h,, vsk = 0 when xB = 0. In order to satisfy the condition vnk = 0 when 

x1 = h,, we make use of the functional arbitrariness in Pk-2* and the arbitrariness in pk is 
used to satisfy the condition %, k+t = o when x, = h,. Taking the form of L', (k,< 5) into 
account, we obtain the following representation for solving system (1.1): 

p = 1 + p 8 (52) e’ - AXI~P (4 es + IA$p* (21) + 

@A)-‘Q. (4 + wtoQ, (4 - Ts (4 pi (XI) + p.01 s' + 

[Axet (22) Tz (2,) - ~Aw&IQI (4 - Axlp4 (a 4 - 

qQ., W + psol es + ee (. . .) 

(3.2) 

2‘4 
v1 =-xr (2, - h,) e -t 7 [ Qa (4 - Qt W a] e5 + e6 (. . .) 

us = Qo bt) 8’ - 2Ax,Q, (xs) E@ + d (. . .) 

T = i -I- Aqe + T, (q) e* - (2A)-lQs (x,) 19 + 
xlQs (4 e6 + d (. . 4 

pto = A”,* [“I, (v - ‘//I) ho* + 711(42Oyw,), Q1 (4 = 
Ah @a) P P k,) 
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The solution (3.2) yields an expression forthepressure 

P = Y-l (1 -t AXIE + p& + [pz (x8) T, (x,) - ‘/#Qs (x2) - 

A%$, (a) + pa (2,, G)I e4 + IqQ3 (4 - 

A?pz 65) T, (G) + Ax,pd (x1, x,) -t p.s (xl, x&l E6 + 8’ (. . .)) 

The physical meaning of the parameter E is given by the quantity Ady which represents 

the principal part of the value of the derivative apiaxl characterizing the pressure drop 

along the stream. 

From (3.2) it follows that the terms of the series written out do not grow more rapidly 

than the terms of a geometrical progression. If the values of the coefficients t&o% and x,, 

are of the same order, then the index of this geometrical progression will be given by the 

expression A~/(yp,). Estimating in this manner the initial terms of the series, we can make 

the corresponding assumptions about the accuracy of the approximate solution obtained. 

Formulas (3.2) yield, in particular, a quantitative estimate for the effect of the 

compressibility of the medium at small pressure drops along the stream (when A<O, the 

stream flows from left to right). Analysing the flow parameters we find it simplest if we 

retain, in formulas (3.2), terms up to and including Ed; the pressure exhibits a small con- 

stant drop along the 0x1 axis, and this can be regarded as the initial condition of the flow 

in question. The velocity ofthemedium is the same as that in Poiseuille flow. The pressure 

is constant across the flow, while the density and temperature both vary. Fiq.4 shows the 

dependence of the quantity 

Fig.4 

0 = 12p+~,T,lA~ on 52 when hi= 1. Lines 1-3 correspondtothevalues 
v = 1.1; 1.4; 7. When y-+m, the maximum value of 8 does not 

tend to zero: rna~,~e _ 0.833. The density and temperature behave 

differently in the downstream direction, i.e. when z1 varies. In 

the caseofthe density, the "inhomogeneity amplitude" across the 

flow (maxXSp - minX8p) increases as z1 increases, but does not change 

in the case of the temperature. Since the constant ptO is chosen 

so that uza= 0 when z2 = h,, it follows that Q2(ho) = 0. Therefore 

\PV%, the flow of gas across the section I~= const is givenwith 

an accuracy of up to and including E*, by the integral \ 1'11 (Msa 

and is analogous to the corresponding expression in the case of 

incompressible medium /l/ (the integration is carried out from 0 

to h,). 
If we consider a tube of circular cross-section, then the 

representation (1.5) will have, in the axisymmetric case, the form 

p= 1 + (P20 - T,)s2 + (P30 - ArrP,)a3 + 
(ppO + YPJ I%(r) r% WI - AX,P, - T,P,) E’ + 

[ Ps0-c YPO 
(Z$ + +) - Ax,p, - T,p,] es + E6 (. . .) 

(3.3) 

U1=~(~‘-~oP)E+(f:~,,~an)E’+&‘(...) 

“Xl 

UI=(&I”_11En-1)E4+ [x&2,_++ 

n-1 *=a 
2 

r, 
M2n-lr2n-1 

I 
&6 + &6 (. . .) 

n-1 

T, = 1 + Axl~ + [* [w ra - T,,~ 
3 P- 

r2 + T,, 

(~L,,+)El/- [Z’(,~N,,rPn)+~~~.ran]es+&‘(...) 
n=o n==4 n==o 

Here r = l/zp2 + zS2; u, is the projection of the vector V(zI,.z2,z8) on the radius vector 

(0, x*,x~); C,,, L,,M,, N, are const.Using (3.3) we can obtain formulas for the mean value of the 
velocity, flow of gas, etc., analogous t0 the corresponding formulas of the incompressible 

case /l/. 
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From (3.2) and (3.3) it follows that in the case of the motion of a compressible medium 
for small values of ,Ad(~p~), the Poiseuille laws describing the motion of a viscous fluid 
will hold approximately. 

The problems of the stability of the flows (3.2) and (3.3) and of existence of their 
secondary solutions can be studied with help of the representation (1.5), taking the analogues 
of the Poiseuille flow constructed above as U,. Then we shall obtain for Uk linear systems 
with variable coefficients whose analysis is very time-consuming, merits a separate investi- 
gation, and is not dealt with here. 

The stationary and non-stationary representations constructed describe, in an approximate 
manner, the solutions of specific initial boundary value problems. Using series (1.5) we can 
also obtain examples of separate flows of a viscous compressible gas. In particular, if we 
take as U, (the solutions of the homogeneous system (2.1) for k = 1) 

>I = (3/2ypoC sin za - B cos x2) exp .q (3.4) 
v,, = -C (sin xa + re cos x2) exp x1 

V PI = CI, sin I, exp zl, T, = B cos x2 exp x1, B, C = const 

or a linear combination of the solutions (3.1) and (3.41, then we can write Ut(k> 2) for 
the stationary case in explicit form. 
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